

Materials Processing TATA STEEL EPSR Institute

Coal Particle Swelling

With Regard to Blast Furnace Coal Injection

Introduction

- · Pulverised coal is injected into the blast furnace raceway via the tuyere to reduce the demand for coke (Carpenter, 2006).
- During this process coal particles may swell to a much larger size (Yu et al. 2003).
- This work aims to further our understanding of the coal particle swelling process and how this may impact upon Blast Furnace performance.

Engineering and Physical Sciences

Research Council

THE UNIVERSITY OF WARWI

Measurement of Particle Swelling

- The High Temperature Confocal Scanning Laser Microscope (HT-CSLM) allows videos of swelling coal particles to be captured as they are heated at specified heating rates (up to 700 K/min) in a controlled atmosphere.
- · Image analysis techniques enable the change in size of individual particles to be measured against temperature.

Above: High Temperature Confocal Scanning Laser Microscope (Source: Shannon et al. (2009))

Below: Still images from HT-CSLM video demonstrating coal particle swelling

Results

+-S1.3-F1.4 -S1.4-F1.7

S1.7

Coal A

-Coal B

-Coal C

600

0.8

200

- Left: Effect of heating rate on swelling ratio for +125 µm particles of Coal B.
- Increasing heating rate from 50 K/min to 700 K/min increases swelling ratio.
- Attributed to increased volatile matter yield and rate of release. At lower heating rates gas can escape before internal pressure builds up. (Gale et al., 1995)
- Left: Effect of particle density on swelling ratio of +125 µm particles of Coal B heated at 700 K/min.
- Lighter particles swell more than denser particles.
- Lighter particles generally have more vitrinite and less mineral matter, therefore enhanced thermo-plastic properties. (Yu et al., 2003)
- Left: Effect of particle size on swelling • ratio for S1.2-F1.3 particles of Coal B heated at 700 K/min.
- Larger particles swell more than smaller particles.
- Larger particles enable a greater build-up of internal pressure and have enhanced thermo-plasticity.
- Left: Effect of coal type on swelling ratio of +125 µm particles of three coals heated at 700 K/min.
- Some coals swell more than others.
- Different coals have different thermoplastic properties due to geological age and provincialism. (Gao et al., 1997)

Project Team

Ian Moore^{ab} (ian.moore@mpiuk.com), Stephen Spooner^a, Zushu Li^a, Colin Atkinson^b, Stefan Born^c, Jan van der Stel^c, Sridhar Seetharaman^d ^aWarwick Manufacturing Group, ^bMaterials Processing Institute, ^cTata Steel, ^dColorado School of Mines

enter, A.M., "Use of PCI in Blast Furnaces" (2006), IEA Coal Research publications, Vol.116, IEA Clean Coal Centre, ISBN 9290294329.

Gale, T. K., Bartholomew, C. H. & Fletcher, T. H. (1995), "Decreases in the Swelling and Porosity of Bituminous Coals During Devolatilisation at High Heating Rates", Combustion and Flame, Vol.100, pp. 94-100.

Gao, H., Murata, S. & Nomura, M. (1997), "Experimental Observation and Image Analysis for Evaluation of Swelling and Fluidity of Single Coal Particles Heated with CO₂ Laser", Energy & Fuels, Vol. 11, pp. 730-738. Shannon, G.N., Fruehan, R.J., Seetharaman, S. (2009), "Removal of Metallic Iron on Oxide Slags", Metallurgical and Materials Transactions B, Vol.40B, pp.727-737

Yu, J., Strezov, V., Lucas, J., & Wall, T. (2003), "Swelling Behaviour of Individual Coal Particles in the Single Particle Reactor", Fuel, Vol.82, pp. 1977-1987.